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In this paper, we address the variety of ways in which students conceive of binary operations and 
the metaphors they might leverage when working with binary operations in group theory. We use 
open-ended surveys paired with interviews to qualitatively explore student’s conceptions of 
binary operation. Through this analysis, we identified three central metaphors (function, 
arithmetic, and structure), as well as a number of attributes related to binary operation that 
students perceive as critical. This work has implications for our treatment of binary operation in 
advanced mathematics, and the messages we send about operation in the K-12 setting. 
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Binary operations are threaded throughout the mathematics curriculum starting with a focus 
on arithmetic, and then expanding to operations such as matrix multiplication and function 
composition. Although binary operations are prolific throughout mathematics in K-12, it is not 
until advanced courses in undergraduate mathematics that binary operation is formally defined. 
In courses such as group theory, students are put in a position to generalize the binary operation 
concept to better understand the structures that underlie our mathematical systems. Despite this 
occurrence, and the prevalence of binary operation mathematics, little research attention has been 
given to the general binary operation. This is disconcerting for two reasons: (1) according a 
survey of expert instructors, binary operation is considered to be one of the most important topics 
in group theory (Melhuish & Fasteen, 2016); (2) binary operations are one of the core concepts 
that can be connected back to the K-12 curriculum (Melhuish & Fagan, in press).   

However, the survey of expert instructors also revealed a possible cause for the lack of 
treatment. They identified binary operation as a topic with low difficulty level (Melhuish & 
Fasteen, 2016). Yet, we found evidence to suggest that students’ conceptions of binary 
operations can significantly interfere with performance on group theory tasks (Melhuish & 
Fasteen, 2016). This evidence was the impetus to study student understanding of binary 
operation more directly.  In this paper, we address the variety of ways in which students conceive 
of binary operations and the metaphors they might leverage when working with binary 
operations across a number of task types. We present a qualitative study, guided by variation 
theory, in which we elaborate on the critical attributes of binary operations that students attend to 
while engaging with related tasks. 

   Literature Review 
Binary operation has uneven treatment throughout the literature. Before we unpack this 

literature, we define what we mean by binary operation. Informally, binary operations can be 
thought of as rules that combine two elements within a set and produce a single element of the 
same set. For instance, addition is a binary operation on the set of integers because addition can 
be thought of as a rule for combining two integers to produce a single integer. Formally, binary 
operations are often defined as follows: 

A binary operation * on a set S is a function mapping S×S into S. 
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This formal definition situates operation as a type of function. We therefore outline literature 
across three categories: (1) arithmetic and other specific operation literature, (2) function 
literature, and (3) literature pertaining to the general binary operation.   

As most literature on student mathematical thinking connects to operation in some way, we 
focus on a few key theoretical contributions (that go beyond the specifics of a particular 
arithmetic operation.)  One such example is the operation sense framework developed by Slavit 
(1998), which unpack a series of stages built around familiarity with standard arithmetic 
operations. In this framework, operations represent a standard process, such as the process of 
combining groups underlying the operation of addition. Slavit’s work documented a path of 
increasing sophistication that could support students’ in developing operation sense that moved 
beyond particular arithmetic process metaphors to an understanding of operation without a need 
for concrete referents. Such understanding can support students’ transition from arithmetic to 
algebra. Gray and Tall (1994) provided a different view on this abstractness focusing on 
operation as a procept.  That is, an operation can be conceived as a process and a concept. An 
expression such as “3+2” is both the object (the sum) and the process (adding the two numbers.) 
In light of this literature base, we identify (1) students may struggle to move beyond arithmetic 
operations on concrete referents and (2) students need to conceive of operations as processes and 
objects (which is non-trivial.) 

We next turn to the literature on function to identify ways in which function understanding 
may be relevant to binary operation. First, there is a large amount of existing literature 
documenting the complexities of function (Oehrtman, Carlson, & Thompson, 2008). Students 
have been shown to possess numerous conceptions throughout their K-16 education. Due to 
space limitations, we note two that provide insight beyond arithmetic literature. First, students 
may interpret functions as necessarily having a written rule (Vinner & Dreyfus, 1989). Such an 
interpretation limits students’ ability to leverage or make sense of non-symbolic representations. 
Additionally, function conceptions are tied to a wide range of metaphors (Zandieh, Ellis, and 
Rasmussen, 2017). One such metaphor is the ubiquitous input/output machine metaphor (Tall, 
McGowen, & DeMarois, 2000). In light of binary operations being a special case of function, we 
conjectured that similar representation and metaphor preferences might exist. 

Finally, we attend to the literature on the general, abstract, binary operation concept. While 
majority of research related to abstract algebra and linear algebra implicitly treat binary 
operations (e.g., Larsen’s (2009) work having students reinvent groups), few studies have 
explicitly focused on binary operation. These few studies are primarily theoretical breakdowns 
(with empirical instantiations) that are part of a larger attempt to map student conceptions. 
Brown, DeVries, Dubinsky, and Thomas (1997) and more recently Wasserman (2017) presented 
genetic decompositions of binary operations in which individuals may have an action (requiring 
concrete actions with individual inputs), process (seeing a binary operation as a general process 
on a domain), or object (seeing binary operation as something that can be acted on) conception 
of binary operations. Alternately, Novotná, Stehlíková, and Hoch (2006) use lens of structure 
sense to produce a framework of binary operation capturing shifts of attention where students 
can first recognize binary operation in familiar settings, then make sense of properties like 
closure, engage with unfamiliar operations, and compare differing representations. Other notable 
results include students have limited representational flexibility (Ehmke, Pesonen, & Haapasalo, 
2010), and have limited example spaces (Zaslavsky & Peled, 1996). While these contributions 
provide some insight into student conceptions around binary operation, many questions remain. 
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   As a whole, the body of research points to substantial reasons to identify binary operation 
as a potentially troubling topic with its nature as a function and operation. In the next section, we 
outline a theoretical lens that has aided us in further parsing students’ activity and conceptions 
around binary operaiton: variation theory (Marton & Booth, 1997).   

Theoretical Framework 
One way to conceptualize learning is the perception of new attributes of a phenomenon or 

experiencing a phenomenon in a new way. Such an approach leverages a variation theory 
(Marton & Booth, 1997) lens. For a given individual, their understanding of a concept reflects 
which attributes of the concept are foregrounded for them. Students become aware of attributes 
through experiences of concepts (and non-examples of concepts) where attributes may be 
foregrounded via contrast. If a student never experiences a non-example of a binary operation 
with one or three inputs, they may not perceive two inputs as a critical attribute of binary 
operation. Alternately, if all examples students encounter have certain commonalities such as 
associativity, students may perceive associativity as a critical attribute of binary operation. In this 
way, variation theory ties learning tightly with the role of experiences and particularly 
contrasting experiences where students may discern attributes of a particular object.  

From a variation theory stance, we then leverage several key ideas including: object of 
learning, critical attributes, and metaphors. Variation theory provides a complimentary tool to 
traditional cognitive or social investigations of learning via shifting from cognition to perception 
(Dahlin, 2001). This shift leads to questions about: What are the critical attributes of a given 
object of learning? What opportunities do students have to perceive (through variation) the 
critical attributes of an object? And ultimately, what critical attributes are in the lived object of 
learning for a student?  

Vikström (2008) has expanded the use of variation theory to also attend to metaphors as the 
means for which students structure and communicate their lived object of learning. As students 
become aware of critical attributes of a phenomenon, metaphors are the mechanism to integrate 
and connect with the abstract notion of a particular concept. When students engage in tasks, they 
then rely on metaphors to connect a given situation to their greater understanding of a concept. 

In accordance with this view on learning, the research questions guiding our study are: (1) 
What are the metaphors leveraged by students when communicating about binary operation?; (2) 
Which attributes are students attending to when engaged in binary operation related tasks? 

Methods 
Participants and Data Collection 

The participants in this study consisted of students enrolled in three introductory, 
undergraduate-level abstract algebra classes (n =9, n = 12, and n = 12 respectively). 
Additionally, we interviewed six students, four of which come from the surveyed class, two from 
another class (that received a shortened survey that is not reported here.)  Classes span two 
institutions and three unique instructors. Surveys were created to cover a variety of binary 
operations and non-binary examples. In particular, the questions were crafted in accordance with 
the following activity domains: 

1. Is or is not. Determining if a given instantiation is an example of a concept (e.g. Ehmke , 
Pesonen, and Happasalo, 2011) 

2. Same or different. Determining if two instantiations are mathematically the same (e.g. 
Novotna, Stehlikova, and Hoch, 2006) 
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3. Properties. Determining what properties an example may or may not have. (e.g. 
Dubinsky Dautermann, Leron, & Zazkis, 1994) 

4. Generating. Creating an example meeting some criteria (e.g. Zaslavsky & Peled, 1996). 
Table 1: Example Survey Prompts 

Category Is or Is not Same or Different Property Generating 
Prompt 
(shortened) 

(+) = +,, on R Z3 and Z6 
(presented 
tabularly) 

Is ½(a+b) 
associative? 

Define a binary 
operation on {1,2,4}  

Purpose Critical attribute: 
closure; Missing: 
2 inputs 
 

Calls on attribute: 
element-wise 
defined 

Missing 
varying 
attribute: E-O-
E formatting 

Calls on varying 
attribute: non-
symbolic 
representation 

 

Each of the questions was open-ended and provided a prompt for the students to explain their 
reasoning. Across the classes, the surveys contained ten common questions, along with several 
variations designed to test the robustness of response types. For the scope of this report, we focus 
on the common questions. 

In addition to the surveys, six semi-structured interviews were conducted to gain deeper 
insight into the students’ mathematical thinking as they worked through the survey. The purpose 
of the interviews was twofold: (1) to validate our interpretations of written responses and (2) 
allow for a closer inspection of metaphors that are leveraged in verbal communication (and not 
always immediately apparent in written responses.)  
Analysis 

The analysis of the survey data was driven by methods of phenomenographic content 
analysis (Trigwall, 2006). Student responses were disconnected from the individual. The goal 
was to identify patterns in the different ways that students experience a given phenomenon. Each 
task was then analyzed for patterns in responses beginning with broad open codes. These were 
condensed to categories reflecting critical attributes of binary operation as experienced by 
students. We then independently coded all survey responses resolving all disagreements via 
discussion. After this analysis, we determined the degree to which a given student’s attention to 
attributes was consistent across tasks. In the results section, we share the dominant critical 
attributes from student responses, as well as reports on consistency.  

For the interview data, we analyzed transcripts to identify the metaphors they leveraged to 
communicate about binary operation. For each transcript, we identified each instance that a 
student communicated directly about binary operation noting varying patterns in language. We 
then returned to the literature to categorize metaphor clusters: arithmetic, function, and structure. 
We used these metaphors to code the transcripts to determine which of the three metaphors 
occurred in a given individual’s communication.  

Results 
We begin by discussing the three metaphors that underlined students’ communication. 

Metaphors 
Function Metaphor Cluster. We define the function metaphor cluster as being enacted 

whenever a student communicates about binary operation as if it were a function, that is, a 
mapping with inputs and outputs. Indicators include: reference to a domain and range, 
input/output language, mapping language, and referencing function specific properties such as 
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one-to-one. An example of a student using this metaphor is the following description of a binary 
operation, “[the binary operation] takes two inputs and returns an output based on the operation.” 
Notice this language evokes traditional function metaphor language where there is something 
(akin to a function machine) that takes inputs and produces outputs. Other examples of using the 
function metaphor include: “[The binary operation] does take two of the numbers and it will 
return a third,” and “The division binary operation is going to take me from the Reals to the 
Reals.” Such metaphors occurred across all of the interviews (see Table 2). 

Table 2: Interviewed Students’ Metaphors for Binary Operation 
Metaphor Function Arithmetic Structure 

Student 1 (Class B) x x x 
Student 2 (Class B) x x x 
Student 3 (Class C) x x x 
Student 4 (Class C) x x x 
Student 5 (Class D) x x x 
Student 6 (Class D) x x  

 

Arithmetic Metaphor Cluster. We define the arithmetic metaphor as being enacted 
whenever a student communicates about binary operation as if it was an arithmetic operation. In 
arithmetic contexts, we tend to leverage a combining metaphor. For example, when adding 2 and 
3, one metaphor would be combining collections of 2 items and 3 items to produce 5 times. This 
action is internal to the inputs rather than taking inputs and mapping to something new (as in a 
function metaphor.) Indicators of this metaphor include language around “answer” and 
“combining.” For example, a student described the action: “Two numbers, take them, combine 
them”. Another described comparing two operations on particular elements with: “They are not 
the same answer.” As in the case of function, these metaphors occurred in all interviews (see 
Table 2). 

Structure Metaphor Cluster. We define the structure metaphor cluster as being enacted 
whenever a student communicates about a binary operation as a mechanism for structuring a set. 
The structure may be noticed based on prior exposure to mathematics (such as a binary operation 
on a set forming a group) or the student may spontaneously create the structure (such as noticing 
a pattern or explicitly searching for a pattern within a set of outputs). Indicators include language 
about overall behavior, patterns, or structural properties. The structure metaphor tended to 
emerge in tasks in which students were asked to compare two binary operations to determine 
whether they were the same. For example, one student asked, “What pattern do we have going 
on there?” and another commented, “These two groups behave rather similarly.” This metaphor 
can be quite productive when considering structural properties of a given set. Structure 
metaphors were frequent, occurring in five of six interviews. 

These results reflect that the three metaphors are not a mutually exclusive categorization of a 
student’s thinking about binary operations. A student can enact any of three metaphors 
depending on the task they are engaged with, and in fact it was common of the students to enact 
all three at some point. Furthermore, the same metaphors can be supportive or unsupportive 
depending on the critical attributes the metaphor is structuring.   
Critical Attributes 

In this section, we unpack some of these critical attributes. Our focus is on the survey results, 
but we note that are interview subjects provided similar profiles in terms of critical attributes. We 
cover two definitional properties (closure, two input elements), one additional critical attribute 
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(binary operations are defined at the element level), and two non-critical representational 
attributes (symbolic rule and element-operator-element (E-O-E) formatting).   

Table 3: Survey Responses when Determining if an Instantiation is a Binary Operation 
 Attended to Closure Attended to Two Input Elements 
 Always Inconsistently Never Always Inconsistently Never 

Class A 5 (62.5%) 2 (25.0%) 1 (12.5%) 0 (0%) 0 (0%) 8 (100%) 
Class B 5 (41.7%) 5 (41.7%) 2 (16.7%) 1 (8.3%) 1 (8.3%) 10 (83.3%) 
Class C 4 (33.3%) 2 (16.7%) 6 (50.0%) 6 (50.0%) 3 (25.0%) 3 (25.0%) 
Total 14 (43.8%) 9 (28.1%) 9 (28.1%) 7 (21.9%) 4 (12.5%) 21 (65.6%) 

 

Closure. The first of the critical attributes is closure. It was common for students to attend to 
closure of a binary operation on a set when asked to determine if a given operation was binary or 
not (see table 3). For example, when asked if ∗ (+) = +, defined on ℝ is a binary operation, one 
student responded, “yes, if + is real, the square of + is also real.”  

Two input elements. The second critical attribute is that a binary operation must be defined 
on two elements (or ordered pairs.) Some students perceived this critical attribute (as seen in 
Table 3). For example, when asked to determine if √+ on ℤ is a binary operation, one student 
responded, “No, only + is used, not both inputs.” However, it was far more common for students 
to ignore this critical attribute and only attend to closure (as in the prior example). 

Table 4: Survey Responses when Determining if two Given Operations were the same 
 Attended to Element-Wise Differences 
 Across Prompts     Element-Defined Prompt Only Never 

Class A 4 (50%) 3 (37.5%) 1 (12.5%) 
Class B 1 (8.3%) 8 (66.7%) 3 (25%) 
Class C 6 (50%) 4 (33.3%) 2 (16.7%) 
Total 11 (34.4%) 15 (46.9%) 6 (18.8%) 

 

Defined element-wise. A particular binary operation is determined by where any two 
elements are mapped. However, students inconsistently treated this as a critical attribute of 
binary operation. This became clear on tasks comparing two operations. For example, when 
provided Cayley tables representing addition modulo 3 and 6 and asked if they were the same 
binary operation, one student responded they were not because whenever they “plug in 1 and 2 
into both these operations [they] will get different results” reflecting attention to individual 
elements. In contrast, another student claimed that the binary operations were the same because 
the elements “behave the same.” Over half of the students either never attended to element-
definedness or only when provided a binary operation already defined that way (see Table 4).  

Table 5: Survey Responses when Asked to Create a Binary Operation on {1,2,4} 
 Non-symbolic Representation  Symbolic Representation  No Answer 

Class A 0 (0.0%) 6 (66.7%) 3 (33.3%) 
Class B 1 (8.3%) 4 (33.3%) 7 (58.3%) 
Class C 9 (75.0%) 3 (25.0%) 0 (0%) 

Total 10 (39.4%) 10 (39.4%) 13 (30.3%) 
 

Symbolic Format. Students across the dataset reflected a preference for symbolic 
representations. In fact, the most commonly skipped tasks across all prompts where those in 
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alternate representations. This preference was most notable in the final prompt asking students to 
generate a binary operation for set {1,2,4}. As seen in table 5, well over half of the students did 
not create a binary operation. Instead they often attempted to build a symbolic rule without any 
success. This desire for a symbolic rule is well documented in terms of functions, and it seems 
that students perceive a similar attribute as critical to binary operation.  

Table 6: Survey Responses when Treating Associativity of ½(a+b) binary operations 
 Focused on EOE Portion(s) of Operation 

(addition/multiplication)  
Focused on Entire 
Operation 

Class A 4 (44.4%) 5 (55.6%) 
Class B 5 (41.2%) 7 (58.3%) 
Class C 9 (75.0%) 3 (25.0%) 

Total 18 (54.5%)  15 (45.5%) 
 

E-O-E Format. The desire for a symbolic rule manifested further with students’ perceiving a 
particular format as critical. This preference was seen throughout the survey responses but was 
most prominent when addressing the prompt to determine if ½(a+b) was associative. As seen in 
table 6, when placed in a situation without this formatting, students often defaulted to focusing 
on addition and multiplication as separate binary operations rather than holistically. Through the 
follow-up interviews, students who responded this way indicated that they could not discern the 
operation “rule” or that the operation was the “plus” portion reflecting the perception that E-O-E 
symbolism was critical.   

Discussion and Conclusion 
In this paper, we have addressed a variety of ways in which students conceive of binary 

operations in terms of critical attributes and identified metaphors they might leverage when 
working on tasks with binary operations. In particular, we found three metaphors that were 
commonly enacted by students: the function metaphor, the arithmetic metaphor, and the structure 
metaphor. Such metaphors can serve to be productive when they are robust and developed. 
However, that requires students to also have perceived the critical attributes of binary operation 
that can be structured and communicated via the metaphors. When leveraging a function 
metaphor, students may naturally attend to function attributes (such as the need for inputs), and 
not perceive a binary operation specific attribute (needing exactly two inputs). Similarly, 
students with an arithmetic metaphor may generalize from arithmetic examples and perceive 
attributes like E-O-E formatting as critical for general binary operations. As variation theorists 
have noted, variations are perceived not just synchronically, but also “by remembering earlier 
related experiences (diachronic simultaneity)” (Vikström, 2009, p. 212).  As students structure 
their knowledge using metaphors, they are likely integrating attributes perceived from many 
prior experiences related to function and arithmetic in their earlier mathematics experiences.  

While the links to function and arithmetic are immediate, the structure metaphor’s link to 
prior experience is a less direct. Notably, the structure metaphor is a dominant metaphor for 
determining when mathematical structures are isomorphic. However, this is a new treatment at 
the undergraduate level. Yet many structural treatments exist throughout education such as 
finding patterns when adding even numbers, or connecting operations like multiplication and 
division. In fact, this played out robustly in our data. Many students identified multiplication and 
division as the same operation because of their similar behavior. A structural metaphor can 
support attending to important varying features (such as a structural property), but can also limit 
students’ attention to the critical attribute of binary operations being element-defined. 
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These results have several implications. First, binary operations are not a trivial despite 
instructors classifying it as such. Instructors may wish to increase attention to binary operation in 
classes with this focus (such as abstract algebra and linear algebra.) Second, students may not 
perceive many critical attributes such as the need for two elements, and may perceive non-
critical attributes as critical such as E-O-E formatting. From a variation standpoint, a potential 
solution is to expose students to examples, non-examples, and non-standard examples so that 
they have opportunities to contrast instantiations with varying critical and non-critical attributes. 
This type of activity can foreground these features so that students may perceive them. From a 
research standpoint, we may want to consider the degree to which these three metaphors, and 
attention to specific attributes may underlie student activity across the K-16 spectrum as they 
engage with common binary operations such as number arithmetic or function composition.  
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